

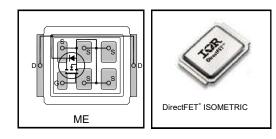
40V

1.0mΩ

1.25mΩ

1.5mΩ

2.0mΩ


209A

Application

- Brushed Motor drive applications
- BLDC Motor drive applications
- Battery powered circuits
- Half-bridge and full-bridge topologies
- Synchronous rectifier applications
- Resonant mode power supplies
- OR-ing and redundant power switches
- DC/DC and AC/DC converters
- DC/AC Inverters

Benefits

- Optimized for Logic Level Drive
- Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
- Fully Characterized Capacitance and Avalanche SOA
- Enhanced body diode dv/dt and di/dt Capability
- Lead-Free, RoHS Compliant

VDSS

R_{DS(on)} typ.

@ V_{GS} = 10V

R_{DS(on)} typ.

@ V_{GS} = 4.5V

D (Silicon Limited)

max

max

Bass part number	Deekege Type	Standard Pac	ck	Ordershie Dort Number
Base part number	Package Type	Form Quantity		Orderable Part Number
IRL7486MPbF	DirectFET [®] ME	Tape and Reel	4800	IRL7486MTRPbF

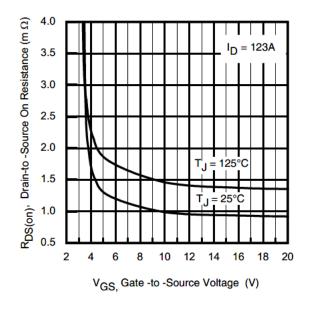


Fig 1. Typical On-Resistance vs. Gate Voltage



Fig 2. Maximum Drain Current vs. Case Temperature

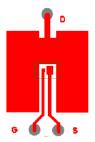
Absolute Maximum Ratings

Symbol	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	209	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V (Silicon Limited)	132	А
I _{DM}	Pulsed Drain Current ①	836	
P _D @T _C = 25°C	Maximum Power Dissipation	104	W
	Linear Derating Factor	0.83	W/°C
V _{GS}	Gate-to-Source Voltage	± 20	V
TJ	Operating Junction and	-55 to + 150	°C
T _{STG}	Storage Temperature Range		

Avalanche Characteristics

EAS (Thermally limited)	Single Pulse Avalanche Energy ②	80	
EAS (Thermally limited)	Single Pulse Avalanche Energy ⑨	190	mJ
E _{AS (tested)}	Single Pulse Avalanche Energy Tested Value ®	111	
I _{AR}	Avalanche Current ①	See Fig.15,16, 23a, 23b	А
E _{AR}	Repetitive Aval`anche Energy ${\mathbb O}$	See Fig. 15, 10, 25a, 25b	mJ

Thermal Resistance


Symbol	Parameter	Тур.	Max.	Units
$R_{ ext{ heta}JA}$	Junction-to-Ambient 0		60	
$R_{ ext{ heta}JA}$	Junction-to-Ambient	12.5		
$R_{ ext{ heta}JA}$	Junction-to-Ambient 2	20		°C/W
$R_{ ext{ heta}JC}$	Junction-to-Case 🛛 🗇		1.2	
$R_{ ext{ heta}J-PCB}$	Junction-to-PCB Mounted	0.75		

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	40			V	V _{GS} = 0V, I _D = 250μA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		35		mV/°C	Reference to 25°C, $I_D = 1.0 \text{mA}$
R _{DS(on)}	Static Drain-to-Source On-Resistance		1.0	1.25		V _{GS} = 10V, I _D = 123A ④
			1.5	2.0	mΩ	V _{GS} = 4.5V, I _D = 62A ④
V _{GS(th)}	Gate Threshold Voltage	1.0	1.8	2.5	V	$V_{DS} = V_{GS}, I_D = 150 \mu A$
1	Drain to Source Lookage Current			1.0		$V_{DS} = 40V, V_{GS} = 0V$
I _{DSS}	Drain-to-Source Leakage Current			150	μA	V _{DS} = 40V, V _{GS} = 0V, T _J = 125°C
I _{GSS}	Gate-to-Source Forward Leakage			100	n A	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	nA	V _{GS} = -20V
R _G	Internal Gate Resistance		0.97		Ω	

Notes:

- Mounted on minimum footprint full size board with metalized back and with small clip heatsink.
- TC measured with thermocouple mounted to top (Drain) of part.
- Used double sided cooling , mounting pad with large heatsink.

• Surface mounted on 1 in. square Cu board (still air).

 Mounted to a PCB with small clip heatsink (still air)

 Mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

Dynamic @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	427			S	V _{DS} = 10V, I _D = 123A
Q _g	Total Gate Charge		76	111		I _D = 123A
Q_{gs}	Gate-to-Source Charge		27		nC	V _{DS} = 20V
Q_{gd}	Gate-to-Drain ("Miller") Charge		33		nc	V _{GS} = 4.5V ④
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})		41			I _D = 123A, V _{DS} =0V, V _{GS} = 10V
t _{d(on)}	Turn-On Delay Time		35			V _{DD} = 20V
t _r	Rise Time		110		ns	I _D = 30A
t _{d(off)}	Turn-Off Delay Time		54		115	$R_{G} = 2.7\Omega$
t _f	Fall Time		47			V _{GS} = 4.5V ④
C _{iss}	Input Capacitance		6904			V _{GS} = 0V
C _{oss}	Output Capacitance		939			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		607		pF	<i>f</i> = 1.0MHz
C _{oss} eff. (ER)	Effective Output Capacitance (Energy Related)	<u> </u>	1150		•	V_{GS} = 0V, V_{DS} = 0V to 32V (6)
C _{oss} eff. (TR)	Effective Output Capacitance (Time Related) 1376			V_{GS} = 0V, V_{DS} = 0V to 32V		
Diode Charac	teristics					

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			104		MOSFET symbol
	(Body Diode)			104	Α	showing the
I _{SM}	Pulsed Source Current			836	A	integral reverse
	(Body Diode) ①			030		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	T _J = 25°C,I _S =123A, V _{GS} = 0V④
dv/dt	Peak Diode Recovery ③		3.6		V/ns	T _J =150°C,I _S =123A, V _{DS} = 40V
t _{rr}	Reverse Recovery Time		43			$T_J = 25^{\circ} C$ $V_R = 34V,$ $T_J = 125^{\circ} C$ $I_F = 123A$
			44		ns	T _J = 125°C I _F = 123A
Q _{rr}	Reverse Recovery Charge		55		nC	T」= 25°C di/dt = 100A/µs ④
			56			T _J = 125°C
I _{RRM}	Reverse Recovery Current		2.1		Α	$T_J = 25^{\circ}C$

Notes:

- Repetitive rating; pulse width limited by max. junction temperature.
- $\label{eq:ISD} \ensuremath{\mathbb{S}} I_{SD} \leq 123 A, \, di/dt \leq 1056 A/\mu s, \, V_{DD} \leq V(_{BR)DSS}, \, T_J \leq 150^\circ C.$
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.

- $\oslash~R_{\theta}$ is measured at T_{J} approximately 90°C.
- [®] This value determined from sample failure population, starting T_J = 25°C, L= 0.011mH, R_G = 50Ω, V_{GS} =10V.
- I Limited by T_Jmax, starting T_J = 25°C, L = 1.0mH $R_G = 50\Omega, I_{AS} = 19.5A, V_{GS} = 10V.$

1000 VGS 15V 10V TOP 6.0V 5.0V I_D, Drain-to-Source Current (A) 4.5V 4.0V 3.5V 100 BOTTOM 3.0V 10 ≤ 60µs PULSE WIDTH Tj = 25°C 1 0.1 10 100 1 V_{DS}, Drain-to-Source Voltage (V)

Fig 3. Typical Output Characteristics

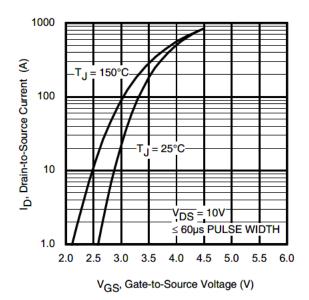


Fig 5. Typical Transfer Characteristics

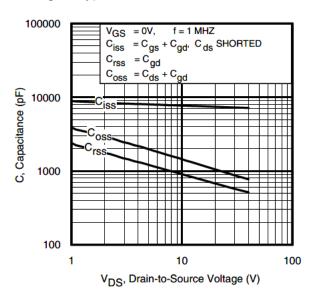


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

IRL7486MTRPbF

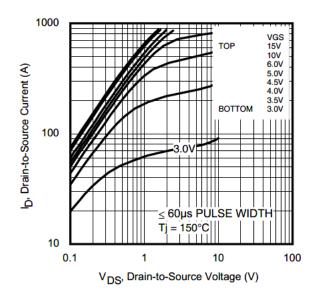


Fig 4. Typical Output Characteristics

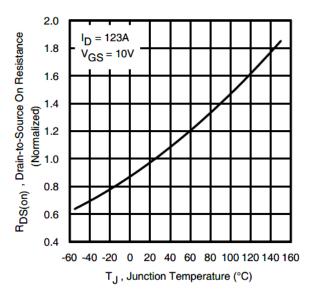


Fig 6. Normalized On-Resistance vs. Temperature

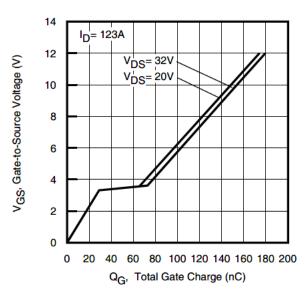
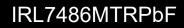



Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

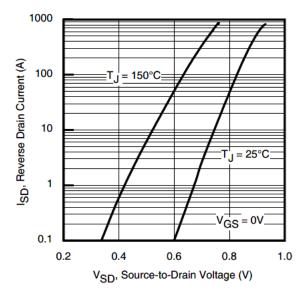


Fig 9. Typical Source-Drain Diode Forward Voltage

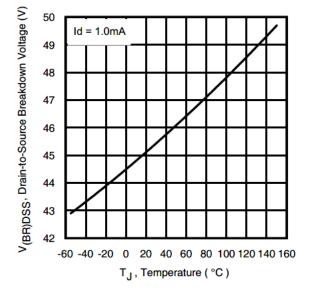


Fig 11. Drain-to-Source Breakdown Voltage

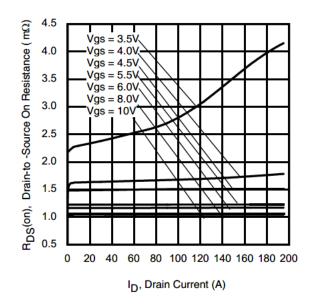


Fig 13. Typical On-Resistance vs. Drain Current

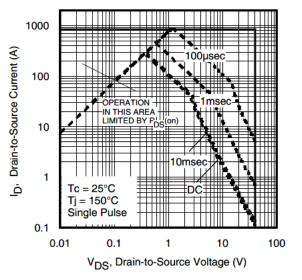


Fig 10. Maximum Safe Operating Area

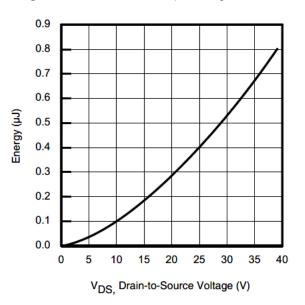
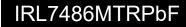
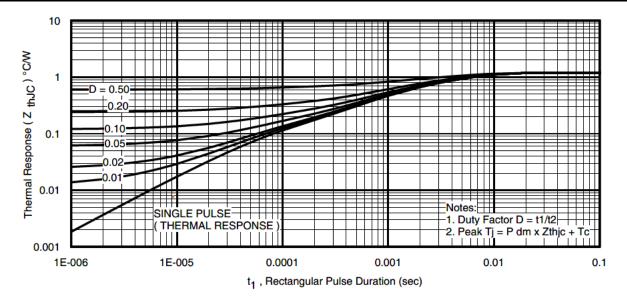




Fig 12. Typical Coss Stored Energy

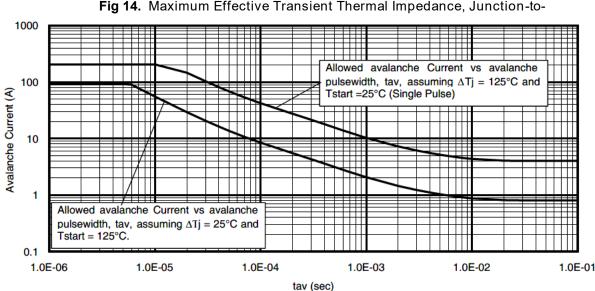


Fig 14. Maximum Effective Transient Thermal Impedance, Junction-to-

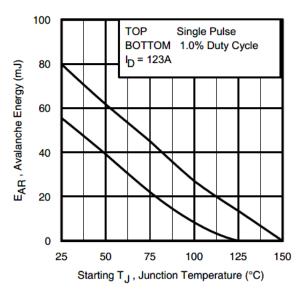


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 15, 16: (For further info, see AN-1005 at www.irf.com)

1.Avalanche failures assumption:

- Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long asT_{imax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. $P_{D (ave)}$ = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
- increase during avalanche). 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{imax} (assumed as 25°C in Figure 14, 15). t_{av} = Average time in avalanche.

 - D = Duty cycle in avalanche = tav $\cdot f$
 - $Z_{thJC}(D, t_{av})$ = Transient thermal resistance, see Figures 13) PD (ave) = 1/2 ($1.3 \cdot BV \cdot I_{av}$) = $\Delta T/Z_{thJC}$ $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$
 - $E_{AS (AR)} = P_{D (ave)} t_{av}$

Rev. 2.1, 2021-07-01

infineon

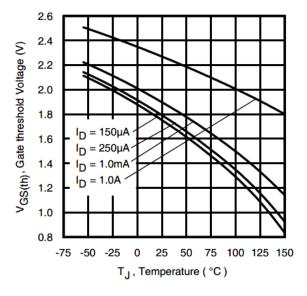


Fig 17. Threshold Voltage vs. Temperature

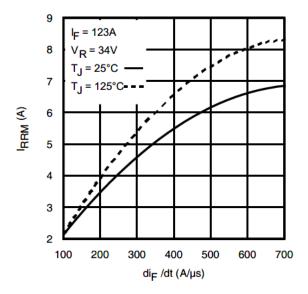


Fig 19. Typical Recovery Current vs. dif/dt

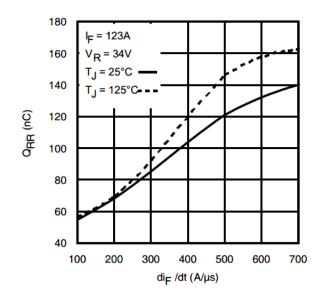
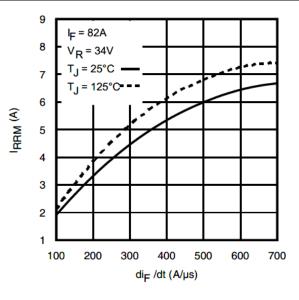



Fig 21. Typical Stored Charge vs. dif/dt

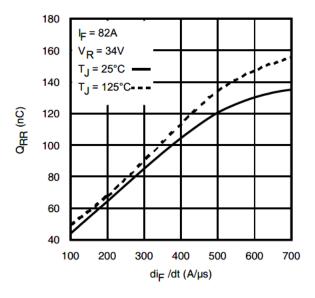


Fig 20. Typical Stored Charge vs. dif/dt

infineon

IRL7486MTRPbF

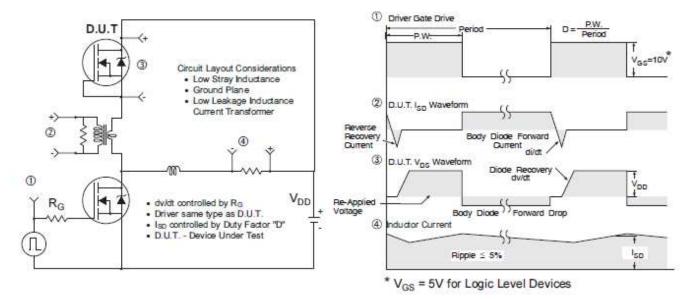


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

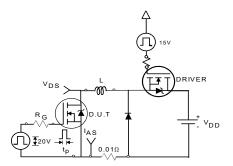


Fig 23a. Unclamped Inductive Test Circuit

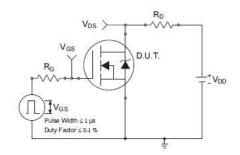


Fig 24a. Switching Time Test Circuit

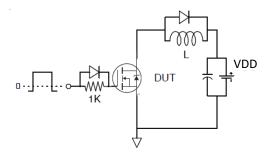


Fig 25a. Gate Charge Test Circuit

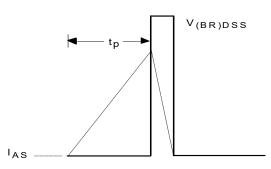


Fig 23b. Unclamped Inductive Waveforms

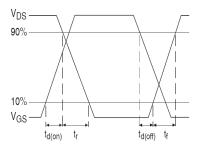
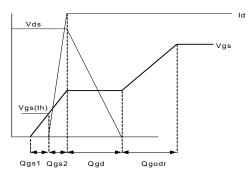
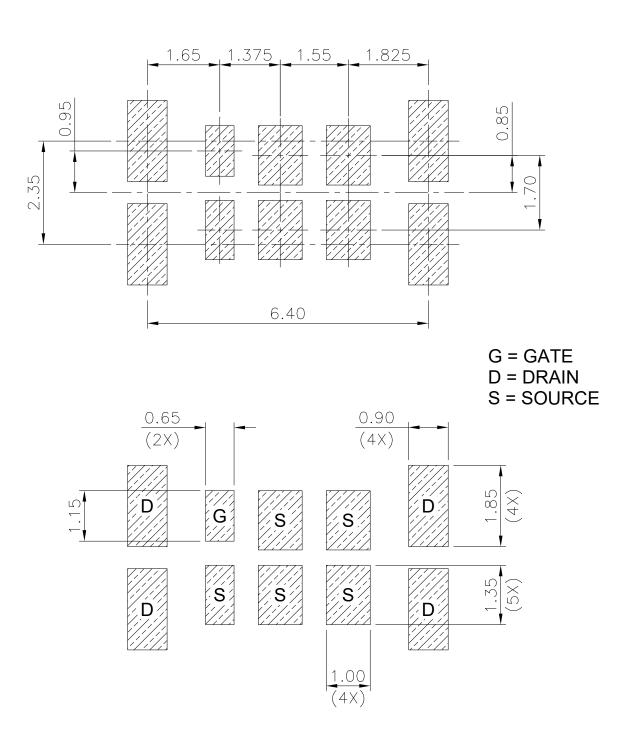


Fig 24b. Switching Time Waveforms

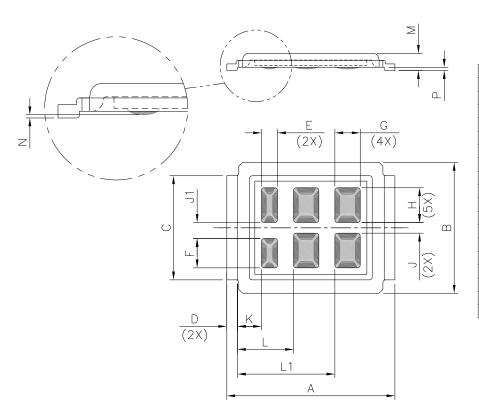



Fig 25b. Gate Charge Waveform

DirectFET[®] Board Footprint, ME Outline

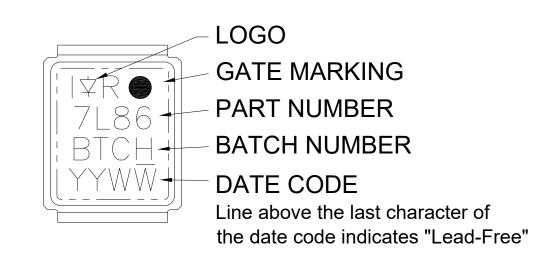
(Medium Size Can, E-Designation)

Please see DirectFET^{*} application note AN-1035 for all details regarding the assembly of DirectFET^{*}. This includes all recommendations for stencil and substrate designs.



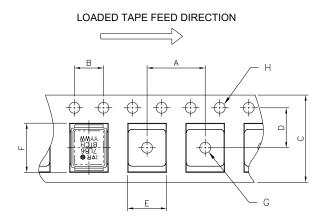
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

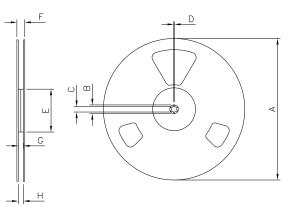
DirectFET[®] Outline Dimension, ME Outline


(Medium Size Can, E-Designation)

Please see DirectFET[®] application note AN-1035 for all details regarding the assembly of DirectFET[®]. This includes all recommendations for stencil and substrate designs.

DIMENSIONS				
				RIAL
CODE	MIN	MAX	MIN	MAX
A	6.25	6.35	0.246	0.250
В	4.80	5.05	0.189	0.199
C	3.85	3.95	0.152	0.156
D	0.35	0.45	0.014	0.018
E	0.58	0.62	0.023	0.024
F	1.08	1.12	0.043	0.044
G	0.93	0.97	0.037	0.038
Н	1.28	1.32	0.050	0.052
J	0.38	0.42	0.015	0.017
 J1	0.58	0.62	0.023	0.024
ĸ	0.88	0.92	0.035	0.036
L	2.08	2.12	0.082	0.083
L1	3.63	3.67	0.143	0.144
М	0.59	0.70	0.023	0.028
N	0.02	0.08	0.0008	0.003
Р	0.08	0.17	0.003	0.007


DirectFET[®] Part Marking



Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

DirectFET[®] Tape & Reel Dimension (Showing component orientation).

NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. Ordered as IRL7486MTRPBF

NOTE: CONTROLLING DIMENSIONS IN MM

DIMENSIONS METRIC IMPERIAL CODE MIN MIN MAX MAX 0.311 7.90 8.10 0.319 Α В 0.154 3.90 4.10 0.161 С 11.90 12.30 0.469 0.484 D 5.45 5.55 0.215 0.219 Е 5.10 5.30 0.201 0.209 F 6.50 6.70 0.256 0.264 G 1.50 N.C 0.059 N.C Н 1.60 0.059 1.50 0.063

REEL DIMENSIONS						
S	STANDARD OPTION (QTY 4800)					
	METRIC IMPERIAL					
CODE	MIN	MAX	MIN	MAX		
А	330.0	N.C	12.992	N.C		
В	20.2	N.C	0.795	N.C		
С	12.8	13.2	0.504	0.520		
D	1.5	N.C	0.059	N.C		
E	100.0	N.C	3.937	N.C		
F	N.C	18.4	N.C	0.724		
G	12.4	14.4	0.488	0.567		
Н	11.9	15.4	0.469	0.606		

Note: For the most current drawing please refer to IR webite at http://www.irf.com/package/

Qualification Information

		Industrial			
Qualification Level	(per JEDEC JESD47F [†] guidelines)				
		MSL1			
Moisture Sensitivity Level	DFET 1.5	(per JEDEC J-STD-020D ^{†)}			
RoHS Compliant	Yes				

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Rev.	Comments
05/14/2015	2.1	 Updated registered trademark from DirectFET[™] to DirectFET[®] on page 1,9 and 10.
07/01/2021	2.2	Updated Eas notes

Trademarks of Infineon Technologies AG

µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™, DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-19 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or **characteristics ("Beschaffenheitsgarantie")**.

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the **responsibility of customer's technical departments** to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, **Infineon Technologies' products may** not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.